

CHIMIOTHÈQUE - MODÉLISATION

- ☐ Stratégies de drug design *de novo* basées sur la cible et/ou sur les ligands
- ☐ Fouille de chimiothèque in silico adaptée aux capacités de criblage (par similarité de structure, par approche pharmacophorique, par docking, par clustering de structures essentielles...)
- ☐ Mise à disposition de molécules, à l'unité en poudre, ou en plaques 96 ou 384 puits.
- ☐ Hit-to-Lead stratégie : Conception in silico et synthèse chimique

PHARMACOPOTENTIALITÉS

- □ ^a Sirius T3 Dau : pKa, solubilité et log P
- □ ^a Solubilité shake-flask
- □ ^a Chromatographic log D_{7,4} (base, neutre)
- □ ^a Chromatographic Hydrophobicity Index
- ☐ Coefficient de partage sur modèle de biomembrane (liposome, Kp) calorimétrie/fluorescence /absorbance
- □ ª PAMPA GIT PAMPA BBB
- ☐ Perméabilisation de membrane (liposome)
- ☐ Perméabilisation de membrane (érythrocyte)

Sign FORMULATION

- □ Nanovecteurs passifs ou actifs (nanoémulsions, nanoparticules, liposomes)
- ☐ Hydrogels thermosensibles et/ou mucoadhésifs
- ☐ Caractérisation pharmacotechnique (propriétés granulométriques, potentiel z, efficacité d'encapsulation, pH, osmolarité, ...)
- ☐ Caractérisation biopharmaceutique en milieux biomimétiques (administration orale / intraveineuse / intranasale)

SYNTHÈSE ORGANIQUE ET ANALYSE STRUCTURALE

- ☐ Synthèse organique (mg au g)
- □ ^a Contrôle qualité HPLC-MS (Tr et m/z)
- □ a RMN ¹H, ¹³C, hétéroatomes et 2D
- □ a MALDI-ToF
- ☐ ^a Point de fusion
- ☐ a Résolution des structures par diffraction aux rayons X sur monocristaux

Biochimie

☐ Antioxydant : Essai DPPH ☐ Antioxydant : Essai ORAC

PHARMACOLOGIE

Enzymologie

- □ a Inhibition des cholinestérases (absorbance) modèle hAChE, hBuChE, eaBuChE
 - %, IC₅₀, Lineweaver-Burk, cinétique des substrats covalents (K_c , k_a , k_a)
- □ a Inhibition MT5-MMP et MT1-MMP : %, IC₅₀

Affinité ligand /récepteur

- □ a Récepteurs sérotoninergiques 5-HT₄, 5-HT₆, 5-HT₇, 5-HTT (radiobinding) : % et Ki
- □ ^a hERG (polarisation de la fluorescence) : % et K_i
- ☐ XIAP-BIR3 (polarisation de la fluorescence) : % et K_i
- ☐ XIAP-BIR2 (AlphaScreen): % et IC₅₀
- ☐ Mcl-1 (polarisation de la fluorescence) : % et IC₅₀

Evaluation de capacité antiagrégante

- \square peptide β-amyloïde₁₋₄₂: % et IC₅₀
- ☐ protéine tau : modèle peptide PHF6 et K18 : % et IC₅₀

email: druid@unicaen.fr

^a Essais réalisés en routine. Les autres nécessitent l'établissement d'un devis en fonction de la demande.